KitOps 완전 가이드: AI/ML 모델 패키징과 버전 관리의 새로운 표준
개요
KitOps는 AI/ML 프로젝트를 위한 혁신적인 패키징, 버전 관리, 공유 시스템입니다. OCI(Open Container Initiative) 표준을 기반으로 하여 기존의 AI/ML, 개발, DevOps 도구들과 완벽하게 호환되며, 엔터프라이즈 컨테이너 레지스트리에 저장할 수 있습니다. 이 가이드에서는 KitOps의 핵심 개념부터 실제 프로덕션 배포까지 완전한 워크플로를 다룹니다.
KitOps의 핵심 가치
🎁 통합 패키징 (Unified Packaging)
ModelKit 패키지는 모델, 데이터셋, 설정, 코드를 모두 포함합니다. 프로젝트에 필요한 만큼 추가하거나 제외할 수 있습니다.
🏭 버전 관리 (Versioning)
각 ModelKit은 태그가 지정되어 어떤 데이터셋과 모델이 함께 작동하는지 모든 팀원이 알 수 있습니다.
🔒 변조 방지 (Tamper-proofing)
각 ModelKit 패키지는 자체와 포함된 모든 아티팩트에 대한 SHA 다이제스트를 포함합니다.
🤩 선택적 언패킹 (Selective Unpacking)
kit unpack --filter
명령으로 ModelKit에서 필요한 부분만 언패킹할 수 있습니다.
설치 및 환경 설정
macOS 설치
# Homebrew를 통한 설치
brew tap kitops-ml/kitops
brew install kitops
# 또는 직접 다운로드
curl -L https://github.com/kitops-ml/kitops/releases/latest/download/kitops-darwin-amd64.tar.gz | tar -xz
sudo mv kit /usr/local/bin/
Linux 설치
# 최신 릴리스 다운로드
curl -L https://github.com/kitops-ml/kitops/releases/latest/download/kitops-linux-amd64.tar.gz | tar -xz
sudo mv kit /usr/local/bin/
# 설치 확인
kit version
Docker 환경에서 사용
FROM alpine:latest
RUN apk add --no-cache curl tar
RUN curl -L https://github.com/kitops-ml/kitops/releases/latest/download/kitops-linux-amd64.tar.gz | tar -xz
RUN mv kit /usr/local/bin/
Kitfile 작성법
기본 Kitfile 구조
# Kitfile
manifestVersion: v1alpha1
package:
name: my-llm-model
version: 1.0.0
description: "Fine-tuned LLM for customer service"
authors: ["Data Science Team"]
model:
- name: customer-service-llm
path: ./models/pytorch_model.bin
description: "PyTorch fine-tuned model"
framework: pytorch
version: "2.1.0"
datasets:
- name: training-data
path: ./data/train.jsonl
description: "Customer service training dataset"
- name: validation-data
path: ./data/val.jsonl
description: "Validation dataset"
code:
- name: inference-script
path: ./src/inference.py
description: "Model inference script"
- name: preprocessing
path: ./src/preprocess.py
description: "Data preprocessing utilities"
docs:
- name: model-card
path: ./docs/model_card.md
description: "Model documentation and metrics"
- name: api-docs
path: ./docs/api.md
description: "API usage documentation"
configs:
- name: training-config
path: ./config/training.yaml
description: "Training hyperparameters"
- name: inference-config
path: ./config/inference.json
description: "Inference configuration"
고급 Kitfile 예시
# Advanced Kitfile with model parts and metadata
manifestVersion: v1alpha1
package:
name: multimodal-assistant
version: 2.1.0
description: "Multi-modal AI assistant with vision and text capabilities"
authors: ["AI Research Team"]
license: "MIT"
repository: "https://github.com/company/multimodal-assistant"
# Base model reference
modelParts:
- name: base-llm
path: registry.company.com/models/llama-2-7b:latest
description: "Base LLaMA 2 7B model"
model:
- name: fine-tuned-multimodal
path: ./models/adapter_model.safetensors
description: "LoRA adapter for multimodal tasks"
framework: transformers
version: "4.35.0"
size: "2.1GB"
format: "safetensors"
datasets:
- name: multimodal-training
path: ./data/multimodal_train.parquet
description: "Image-text paired training data"
size: "15GB"
samples: 500000
- name: evaluation-suite
path: ./data/eval/
description: "Comprehensive evaluation datasets"
code:
- name: training-pipeline
path: ./src/train.py
description: "Multi-modal training pipeline"
- name: inference-api
path: ./src/api/
description: "FastAPI inference server"
- name: evaluation-scripts
path: ./src/eval/
description: "Model evaluation utilities"
# Custom metadata
metadata:
performance:
bleu_score: 0.85
rouge_l: 0.78
accuracy: 0.92
training:
epochs: 10
learning_rate: 2e-5
batch_size: 16
gpu_hours: 240
deployment:
min_memory: "8GB"
recommended_gpu: "RTX 4090"
inference_time: "150ms"
ModelKit 생성 및 관리
1. ModelKit 패킹
# 기본 패킹
kit pack . -t my-registry.com/my-model:1.0.0
# 특정 레지스트리에 직접 푸시
kit pack . -t my-registry.com/my-model:1.0.0 --push
# 압축 옵션 지정
kit pack . -t my-model:1.0.0 --compression gzip
# 서명과 함께 패킹
kit pack . -t my-model:1.0.0 --sign --key ./private.key
2. ModelKit 언패킹
# 전체 ModelKit 언패킹
kit unpack my-registry.com/my-model:1.0.0 -d ./unpacked
# 모델만 언패킹
kit unpack my-registry.com/my-model:1.0.0 --model -d ./model-only
# 데이터셋과 코드만 언패킹
kit unpack my-registry.com/my-model:1.0.0 --datasets --code -d ./data-code
# 특정 아티팩트만 언패킹
kit unpack my-registry.com/my-model:1.0.0 --filter "*.py,*.yaml" -d ./filtered
3. ModelKit 정보 조회
# ModelKit 상세 정보
kit info my-registry.com/my-model:1.0.0
# 로컬 ModelKit 목록
kit list
# 원격 레지스트리의 ModelKit 목록
kit list my-registry.com/my-models
# ModelKit 히스토리
kit history my-registry.com/my-model
실전 워크플로 예시
시나리오 1: LLM Fine-tuning 프로젝트
1단계: 프로젝트 구조 설정
# 프로젝트 디렉토리 생성
mkdir llm-finetuning-project
cd llm-finetuning-project
# 디렉토리 구조
mkdir -p {models,data,src,config,docs}
# 기본 파일 구조
tree .
llm-finetuning-project/
├── Kitfile
├── models/
│ ├── pytorch_model.bin
│ ├── config.json
│ └── tokenizer.json
├── data/
│ ├── train.jsonl
│ ├── val.jsonl
│ └── test.jsonl
├── src/
│ ├── train.py
│ ├── inference.py
│ └── utils.py
├── config/
│ ├── training.yaml
│ └── inference.json
└── docs/
├── model_card.md
└── README.md
2단계: Kitfile 작성
manifestVersion: v1alpha1
package:
name: customer-support-llm
version: 1.0.0
description: "Fine-tuned LLM for customer support automation"
authors: ["AI Team <ai@company.com>"]
model:
- name: finetuned-model
path: ./models/
description: "Fine-tuned customer support model"
framework: "transformers"
baseModel: "microsoft/DialoGPT-medium"
datasets:
- name: support-conversations
path: ./data/train.jsonl
description: "Customer support conversation dataset"
samples: 50000
- name: validation-set
path: ./data/val.jsonl
description: "Validation dataset"
code:
- name: training-script
path: ./src/train.py
description: "Model fine-tuning script"
- name: inference-engine
path: ./src/inference.py
description: "Inference API server"
configs:
- name: training-params
path: ./config/training.yaml
description: "Training hyperparameters"
docs:
- name: documentation
path: ./docs/
description: "Model documentation and usage guide"
metadata:
training:
epochs: 5
learning_rate: 5e-5
batch_size: 8
validation_loss: 0.45
performance:
perplexity: 12.3
bleu_score: 0.72
hardware:
gpu_type: "RTX 4090"
training_time: "6 hours"
3단계: ModelKit 생성 및 버전 관리
# 개발 버전 생성
kit pack . -t company-registry.com/ai/customer-support-llm:dev
# 테스트 후 스테이징 버전
kit pack . -t company-registry.com/ai/customer-support-llm:1.0.0-staging
# 프로덕션 릴리스
kit pack . -t company-registry.com/ai/customer-support-llm:1.0.0 --push
# 태그 추가
kit tag company-registry.com/ai/customer-support-llm:1.0.0 latest
시나리오 2: RAG 파이프라인 구축
RAG 시스템 Kitfile
manifestVersion: v1alpha1
package:
name: rag-knowledge-assistant
version: 2.0.0
description: "RAG-based knowledge assistant with vector search"
authors: ["Knowledge Team"]
modelParts:
- name: embedding-model
path: registry.com/models/sentence-transformers:latest
description: "Sentence transformer for embeddings"
- name: llm-base
path: registry.com/models/llama-2-13b-chat:latest
description: "Base LLM for generation"
model:
- name: fine-tuned-retriever
path: ./models/retriever/
description: "Fine-tuned retrieval model"
- name: generation-adapter
path: ./models/generation/adapter_model.safetensors
description: "LoRA adapter for domain-specific generation"
datasets:
- name: knowledge-base
path: ./data/knowledge_corpus.jsonl
description: "Domain knowledge corpus"
documents: 100000
- name: qa-pairs
path: ./data/qa_training.jsonl
description: "Question-answer training pairs"
- name: vector-index
path: ./data/embeddings/
description: "Pre-computed vector embeddings"
code:
- name: rag-pipeline
path: ./src/rag/
description: "Complete RAG pipeline implementation"
- name: vector-search
path: ./src/search/
description: "Vector similarity search engine"
- name: api-server
path: ./src/api/
description: "FastAPI server with RAG endpoints"
configs:
- name: rag-config
path: ./config/rag_config.yaml
description: "RAG pipeline configuration"
- name: search-config
path: ./config/search_params.json
description: "Vector search parameters"
metadata:
performance:
retrieval_recall_at_5: 0.89
generation_bleu: 0.81
end_to_end_latency: "250ms"
infrastructure:
vector_db: "Pinecone"
embedding_dim: 768
index_size: "2GB"
Kubernetes 배포
1. ModelKit에서 Kubernetes 매니페스트 생성
# Kubernetes 배포 설정 생성
kit deploy create kubernetes \
--modelkit company-registry.com/ai/customer-support-llm:1.0.0 \
--output ./k8s-deployment.yaml
# KServe 배포 설정 생성
kit deploy create kserve \
--modelkit company-registry.com/ai/customer-support-llm:1.0.0 \
--output ./kserve-deployment.yaml
2. 생성된 Kubernetes 매니페스트
# k8s-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: customer-support-llm
labels:
app: customer-support-llm
version: "1.0.0"
spec:
replicas: 3
selector:
matchLabels:
app: customer-support-llm
template:
metadata:
labels:
app: customer-support-llm
spec:
initContainers:
- name: model-loader
image: kitops/kit:latest
command: ["kit", "unpack", "--model", "--code"]
args: ["company-registry.com/ai/customer-support-llm:1.0.0"]
volumeMounts:
- name: model-storage
mountPath: /models
containers:
- name: inference-server
image: python:3.9-slim
command: ["python", "/app/inference.py"]
ports:
- containerPort: 8000
volumeMounts:
- name: model-storage
mountPath: /models
env:
- name: MODEL_PATH
value: "/models"
resources:
requests:
memory: "4Gi"
cpu: "1000m"
limits:
memory: "8Gi"
cpu: "2000m"
volumes:
- name: model-storage
emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
name: customer-support-llm-service
spec:
selector:
app: customer-support-llm
ports:
- port: 80
targetPort: 8000
type: LoadBalancer
3. KServe 배포
# kserve-deployment.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: customer-support-llm
spec:
predictor:
model:
modelFormat:
name: pytorch
storageUri: "kit://company-registry.com/ai/customer-support-llm:1.0.0"
resources:
requests:
memory: 4Gi
cpu: "2"
limits:
memory: 8Gi
cpu: "4"
env:
- name: STORAGE_URI
value: "kit://company-registry.com/ai/customer-support-llm:1.0.0"
4. 배포 실행
# Kubernetes 클러스터에 배포
kubectl apply -f k8s-deployment.yaml
# KServe 배포 (KServe가 설치된 클러스터)
kubectl apply -f kserve-deployment.yaml
# 배포 상태 확인
kubectl get pods -l app=customer-support-llm
kubectl get svc customer-support-llm-service
# 로그 확인
kubectl logs -l app=customer-support-llm -f
컨테이너 배포
1. ModelKit에서 컨테이너 생성
# 기본 컨테이너 생성
kit deploy create docker \
--modelkit company-registry.com/ai/customer-support-llm:1.0.0 \
--output ./Dockerfile
# 커스텀 베이스 이미지 사용
kit deploy create docker \
--modelkit company-registry.com/ai/customer-support-llm:1.0.0 \
--base-image python:3.9-slim \
--output ./Dockerfile.custom
2. 생성된 Dockerfile
# Dockerfile
FROM python:3.9-slim
# KitOps CLI 설치
RUN apt-get update && apt-get install -y curl && \
curl -L https://github.com/kitops-ml/kitops/releases/latest/download/kitops-linux-amd64.tar.gz | tar -xz && \
mv kit /usr/local/bin/ && \
apt-get clean && rm -rf /var/lib/apt/lists/*
# 작업 디렉토리 설정
WORKDIR /app
# ModelKit 언패킹
RUN kit unpack company-registry.com/ai/customer-support-llm:1.0.0 --code --model --configs -d /app
# 의존성 설치
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# 추가 Python 패키지 설치
RUN pip install torch transformers flask gunicorn
# 포트 노출
EXPOSE 8000
# 헬스체크
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
CMD curl -f http://localhost:8000/health || exit 1
# 애플리케이션 실행
CMD ["gunicorn", "--bind", "0.0.0.0:8000", "--workers", "4", "inference:app"]
3. 컨테이너 빌드 및 실행
# 컨테이너 이미지 빌드
docker build -t customer-support-llm:1.0.0 .
# 컨테이너 실행
docker run -d \
--name customer-support-api \
-p 8000:8000 \
--memory=8g \
--cpus=2 \
customer-support-llm:1.0.0
# 로그 확인
docker logs -f customer-support-api
# 헬스체크
curl http://localhost:8000/health
고급 기능 활용
1. 모델 서명 및 검증
# GPG 키 생성
gpg --full-generate-key
# 모델 서명하여 패킹
kit pack . -t signed-model:1.0.0 --sign --key ~/.gnupg/secring.gpg
# 서명 검증
kit verify signed-model:1.0.0 --key ~/.gnupg/pubring.gpg
2. 멀티 아키텍처 지원
# ARM64 아키텍처용 ModelKit
kit pack . -t my-model:1.0.0-arm64 --platform linux/arm64
# AMD64 아키텍처용 ModelKit
kit pack . -t my-model:1.0.0-amd64 --platform linux/amd64
# 매니페스트 리스트 생성
kit manifest create my-model:1.0.0 \
my-model:1.0.0-arm64 \
my-model:1.0.0-amd64
3. 개발 모드 활용
# 로컬 개발 서버 시작
kit dev start --modelkit my-model:latest --port 8080
# 모델과 상호작용
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [{"role": "user", "content": "Hello, how can you help me?"}],
"max_tokens": 100
}'
# 개발 서버 중지
kit dev stop
CI/CD 통합
GitHub Actions 워크플로
# .github/workflows/model-deployment.yml
name: Model Deployment Pipeline
on:
push:
branches: [main]
paths: ['models/**', 'Kitfile']
jobs:
build-and-deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v3
- name: Install KitOps
run: |
curl -L https://github.com/kitops-ml/kitops/releases/latest/download/kitops-linux-amd64.tar.gz | tar -xz
sudo mv kit /usr/local/bin/
- name: Login to registry
run: |
echo $ | kit auth login $ -u $ --password-stdin
- name: Build ModelKit
run: |
VERSION=$(git rev-parse --short HEAD)
kit pack . -t $/models/customer-support-llm:$VERSION
kit pack . -t $/models/customer-support-llm:latest
- name: Run tests
run: |
# ModelKit 테스트
kit unpack $/models/customer-support-llm:latest --code -d ./test-env
cd test-env && python -m pytest tests/
- name: Push ModelKit
run: |
VERSION=$(git rev-parse --short HEAD)
kit push $/models/customer-support-llm:$VERSION
kit push $/models/customer-support-llm:latest
- name: Deploy to staging
if: github.ref == 'refs/heads/main'
run: |
kit deploy create kubernetes \
--modelkit $/models/customer-support-llm:latest \
--output k8s-staging.yaml
kubectl apply -f k8s-staging.yaml --namespace=staging
- name: Run integration tests
run: |
# 스테이징 환경 테스트
sleep 60 # 배포 대기
curl -f http://staging-api.company.com/health
- name: Deploy to production
if: github.ref == 'refs/heads/main'
run: |
kubectl apply -f k8s-staging.yaml --namespace=production
Jenkins Pipeline
// Jenkinsfile
pipeline {
agent any
environment {
REGISTRY_URL = credentials('registry-url')
REGISTRY_CREDS = credentials('registry-credentials')
KUBECONFIG = credentials('kubeconfig')
}
stages {
stage('Setup') {
steps {
script {
// KitOps 설치
sh '''
curl -L https://github.com/kitops-ml/kitops/releases/latest/download/kitops-linux-amd64.tar.gz | tar -xz
sudo mv kit /usr/local/bin/
'''
}
}
}
stage('Build ModelKit') {
steps {
script {
def version = env.BUILD_NUMBER
sh """
kit auth login ${REGISTRY_URL} -u ${REGISTRY_CREDS_USR} -p ${REGISTRY_CREDS_PSW}
kit pack . -t ${REGISTRY_URL}/models/customer-support-llm:${version}
kit pack . -t ${REGISTRY_URL}/models/customer-support-llm:latest
"""
}
}
}
stage('Test') {
steps {
sh '''
kit unpack ${REGISTRY_URL}/models/customer-support-llm:latest --code -d ./test-env
cd test-env && python -m pytest tests/ --junitxml=test-results.xml
'''
junit 'test-env/test-results.xml'
}
}
stage('Deploy') {
when {
branch 'main'
}
steps {
sh '''
kit push ${REGISTRY_URL}/models/customer-support-llm:${BUILD_NUMBER}
kit push ${REGISTRY_URL}/models/customer-support-llm:latest
kit deploy create kubernetes \\
--modelkit ${REGISTRY_URL}/models/customer-support-llm:latest \\
--output k8s-deployment.yaml
kubectl apply -f k8s-deployment.yaml
'''
}
}
}
post {
always {
cleanWs()
}
success {
slackSend channel: '#ai-deployments',
color: 'good',
message: "✅ Model deployment successful: ${env.JOB_NAME} - ${env.BUILD_NUMBER}"
}
failure {
slackSend channel: '#ai-deployments',
color: 'danger',
message: "❌ Model deployment failed: ${env.JOB_NAME} - ${env.BUILD_NUMBER}"
}
}
}
모니터링 및 관찰성
1. ModelKit 메트릭 수집
# monitoring/metrics_collector.py
import time
import psutil
import GPUtil
from prometheus_client import Counter, Histogram, Gauge, start_http_server
# 메트릭 정의
MODEL_REQUESTS = Counter('model_requests_total', 'Total model requests', ['model_name', 'version'])
MODEL_LATENCY = Histogram('model_inference_duration_seconds', 'Model inference latency')
MODEL_MEMORY = Gauge('model_memory_usage_bytes', 'Model memory usage')
GPU_UTILIZATION = Gauge('gpu_utilization_percent', 'GPU utilization')
class ModelMonitor:
def __init__(self, model_name, model_version):
self.model_name = model_name
self.model_version = model_version
def record_request(self):
MODEL_REQUESTS.labels(
model_name=self.model_name,
version=self.model_version
).inc()
def record_latency(self, duration):
MODEL_LATENCY.observe(duration)
def update_system_metrics(self):
# 메모리 사용량
memory = psutil.virtual_memory()
MODEL_MEMORY.set(memory.used)
# GPU 사용률
try:
gpus = GPUtil.getGPUs()
if gpus:
GPU_UTILIZATION.set(gpus[0].load * 100)
except:
pass
# 사용 예시
monitor = ModelMonitor("customer-support-llm", "1.0.0")
def inference_with_monitoring(input_text):
start_time = time.time()
monitor.record_request()
try:
# 실제 추론 로직
result = model.generate(input_text)
# 메트릭 기록
duration = time.time() - start_time
monitor.record_latency(duration)
monitor.update_system_metrics()
return result
except Exception as e:
# 에러 메트릭 기록
ERROR_COUNTER.labels(error_type=type(e).__name__).inc()
raise
# Prometheus 메트릭 서버 시작
start_http_server(8001)
2. Grafana 대시보드 설정
{
"dashboard": {
"title": "KitOps Model Performance",
"panels": [
{
"title": "Request Rate",
"type": "graph",
"targets": [
{
"expr": "rate(model_requests_total[5m])",
"legendFormat": " v"
}
]
},
{
"title": "Inference Latency",
"type": "graph",
"targets": [
{
"expr": "histogram_quantile(0.95, model_inference_duration_seconds_bucket)",
"legendFormat": "95th percentile"
},
{
"expr": "histogram_quantile(0.50, model_inference_duration_seconds_bucket)",
"legendFormat": "50th percentile"
}
]
},
{
"title": "Memory Usage",
"type": "singlestat",
"targets": [
{
"expr": "model_memory_usage_bytes / 1024 / 1024 / 1024",
"legendFormat": "Memory (GB)"
}
]
},
{
"title": "GPU Utilization",
"type": "singlestat",
"targets": [
{
"expr": "gpu_utilization_percent",
"legendFormat": "GPU %"
}
]
}
]
}
}
보안 및 거버넌스
1. 모델 보안 정책
# security-policy.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: kitops-security-policy
data:
policy.yaml: |
security:
signing:
required: true
trusted_keys:
- "ai-team@company.com"
- "mlops-team@company.com"
scanning:
enabled: true
vulnerability_threshold: "HIGH"
scan_on_push: true
access_control:
registry_auth: true
rbac_enabled: true
allowed_registries:
- "company-registry.com"
- "staging-registry.com"
audit:
log_all_operations: true
retention_days: 90
compliance_mode: "SOC2"
2. 모델 거버넌스 워크플로
# governance/model_approval.py
import yaml
from dataclasses import dataclass
from typing import List, Dict, Any
from enum import Enum
class ApprovalStatus(Enum):
PENDING = "pending"
APPROVED = "approved"
REJECTED = "rejected"
@dataclass
class ModelApproval:
model_name: str
version: str
requester: str
approvers: List[str]
status: ApprovalStatus
performance_metrics: Dict[str, float]
security_scan_results: Dict[str, Any]
bias_evaluation: Dict[str, Any]
class ModelGovernance:
def __init__(self, config_path: str):
with open(config_path, 'r') as f:
self.config = yaml.safe_load(f)
def submit_for_approval(self, modelkit_ref: str) -> str:
"""모델 승인 요청 제출"""
# ModelKit 정보 추출
info = self.extract_modelkit_info(modelkit_ref)
# 자동 검증 실행
validation_results = self.run_automated_validation(modelkit_ref)
# 승인 요청 생성
approval = ModelApproval(
model_name=info['name'],
version=info['version'],
requester=info['author'],
approvers=self.get_required_approvers(info),
status=ApprovalStatus.PENDING,
performance_metrics=validation_results['performance'],
security_scan_results=validation_results['security'],
bias_evaluation=validation_results['bias']
)
# 승인 워크플로 시작
return self.initiate_approval_workflow(approval)
def run_automated_validation(self, modelkit_ref: str) -> Dict[str, Any]:
"""자동화된 모델 검증"""
results = {}
# 성능 검증
results['performance'] = self.validate_performance(modelkit_ref)
# 보안 스캔
results['security'] = self.security_scan(modelkit_ref)
# 편향성 평가
results['bias'] = self.bias_evaluation(modelkit_ref)
# 규정 준수 확인
results['compliance'] = self.compliance_check(modelkit_ref)
return results
def validate_performance(self, modelkit_ref: str) -> Dict[str, float]:
"""성능 기준 검증"""
# ModelKit 언패킹 및 모델 로드
# 벤치마크 데이터셋으로 평가
# 성능 임계값 확인
return {
"accuracy": 0.95,
"latency_p95": 150.0,
"memory_usage": 4.2
}
def security_scan(self, modelkit_ref: str) -> Dict[str, Any]:
"""보안 취약점 스캔"""
return {
"vulnerabilities": [],
"signature_valid": True,
"dependencies_secure": True
}
def bias_evaluation(self, modelkit_ref: str) -> Dict[str, Any]:
"""편향성 평가"""
return {
"demographic_parity": 0.85,
"equalized_odds": 0.88,
"fairness_score": 0.92
}
트러블슈팅 가이드
1. 일반적인 문제와 해결책
문제: ModelKit 패킹 실패
# 해결책 1: 권한 확인
ls -la Kitfile
chmod 644 Kitfile
# 해결책 2: 디스크 공간 확인
df -h
# 해결책 3: 상세 로그 확인
kit pack . -t my-model:1.0.0 --verbose
문제: 레지스트리 인증 실패
# 해결책: 인증 정보 재설정
kit auth logout registry.company.com
kit auth login registry.company.com -u username
# 토큰 기반 인증
echo $REGISTRY_TOKEN | kit auth login registry.company.com -u username --password-stdin
문제: Kubernetes 배포 실패
# 해결책 1: 리소스 확인
kubectl describe pod -l app=customer-support-llm
# 해결책 2: 이미지 풀 시크릿 설정
kubectl create secret docker-registry regcred \
--docker-server=registry.company.com \
--docker-username=username \
--docker-password=password
# 해결책 3: 노드 리소스 확인
kubectl top nodes
kubectl describe node
2. 디버깅 도구
# ModelKit 내용 검사
kit inspect my-model:1.0.0
# 레이어 분석
kit layers my-model:1.0.0
# 의존성 트리
kit deps my-model:1.0.0 --tree
# 무결성 검증
kit verify my-model:1.0.0 --checksum
결론
KitOps는 AI/ML 프로젝트의 복잡한 아티팩트 관리 문제를 OCI 표준 기반의 통합 솔루션으로 해결합니다. ModelKit을 통해 모델, 데이터, 코드, 설정을 하나의 불변 패키지로 관리할 수 있으며, 선택적 언패킹으로 필요한 부분만 효율적으로 사용할 수 있습니다.
🎯 핵심 장점
- 표준화: OCI 호환으로 기존 인프라와 완벽 통합
- 보안: 서명, 검증, 변조 방지 기능 제공
- 효율성: 선택적 언패킹으로 리소스 절약
- 확장성: Kubernetes, Docker 등 다양한 배포 환경 지원
- 거버넌스: 엔터프라이즈급 모델 관리 및 감사 기능
🚀 다음 단계
- KitOps 공식 문서 참조
- GitHub 리포지토리에서 최신 업데이트 확인
- Discord 커뮤니티 참여
- 실제 프로젝트에 KitOps 도입 검토
KitOps를 통해 AI/ML 프로젝트의 아티팩트 관리를 혁신하고, 팀 간 협업을 개선하며, 프로덕션 배포를 안전하고 효율적으로 수행하시기 바랍니다.