Anteon: Complete Guide to eBPF-based Kubernetes Monitoring and Performance Testing
⏱️ Estimated Reading Time: 15 minutes
Introduction
Anteon (formerly Ddosify) is a revolutionary open-source platform that combines eBPF-based Kubernetes monitoring with performance testing capabilities. Unlike traditional monitoring solutions that require code instrumentation or sidecars, Anteon automatically generates service maps and provides real-time insights into your Kubernetes clusters.
What Makes Anteon Special?
- Zero Code Changes: No instrumentation, restarts, or sidecars required
- Automatic Service Discovery: eBPF-based agent creates service maps automatically
- Integrated Performance Testing: Native load testing from 25+ countries
- Real-time Monitoring: Live CPU, memory, disk, and network metrics
- Intelligent Alerting: Slack integration for anomaly detection
Prerequisites
Before starting this tutorial, ensure you have:
- Kubernetes cluster (local or cloud-based)
- kubectl configured and connected to your cluster
- Helm 3.0+ installed
- Docker installed (for local testing)
- macOS/Linux environment
Part 1: Setting Up Local Kubernetes Environment
Step 1: Install Required Tools
Let’s start by setting up a local Kubernetes environment using Kind (Kubernetes in Docker):
#!/bin/bash
# install-k8s-tools.sh
echo "🚀 Installing Kubernetes tools for Anteon tutorial..."
# Install Docker if not present
if ! command -v docker &> /dev/null; then
echo "Installing Docker..."
brew install --cask docker
fi
# Install kubectl
if ! command -v kubectl &> /dev/null; then
echo "Installing kubectl..."
brew install kubectl
fi
# Install Helm
if ! command -v helm &> /dev/null; then
echo "Installing Helm..."
brew install helm
fi
# Install Kind
if ! command -v kind &> /dev/null; then
echo "Installing Kind..."
brew install kind
fi
echo "✅ All tools installed successfully!"
Step 2: Create Local Kubernetes Cluster
#!/bin/bash
# setup-kind-cluster.sh
echo "🎯 Creating Kind cluster for Anteon demo..."
# Create Kind cluster configuration
cat <<EOF > kind-config.yaml
kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
name: anteon-demo
nodes:
- role: control-plane
kubeadmConfigPatches:
- |
kind: InitConfiguration
nodeRegistration:
kubeletExtraArgs:
node-labels: "ingress-ready=true"
extraPortMappings:
- containerPort: 80
hostPort: 8080
protocol: TCP
- containerPort: 443
hostPort: 8443
protocol: TCP
- role: worker
- role: worker
EOF
# Create the cluster
kind create cluster --config kind-config.yaml
# Verify cluster is running
kubectl cluster-info --context kind-anteon-demo
echo "✅ Kind cluster 'anteon-demo' created successfully!"
Part 2: Installing Anteon on Kubernetes
Step 1: Deploy Sample Applications
First, let’s deploy some sample applications to monitor:
#!/bin/bash
# deploy-sample-apps.sh
echo "🎯 Deploying sample applications for monitoring..."
# Create namespace
kubectl create namespace demo-apps
# Deploy a sample web application
cat <<EOF | kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
name: web-app
namespace: demo-apps
spec:
replicas: 3
selector:
matchLabels:
app: web-app
template:
metadata:
labels:
app: web-app
spec:
containers:
- name: web-app
image: nginx:1.21
ports:
- containerPort: 80
resources:
requests:
cpu: 100m
memory: 128Mi
limits:
cpu: 500m
memory: 512Mi
---
apiVersion: v1
kind: Service
metadata:
name: web-app-service
namespace: demo-apps
spec:
selector:
app: web-app
ports:
- port: 80
targetPort: 80
type: ClusterIP
EOF
# Deploy a database simulation
cat <<EOF | kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
name: db-app
namespace: demo-apps
spec:
replicas: 1
selector:
matchLabels:
app: db-app
template:
metadata:
labels:
app: db-app
spec:
containers:
- name: db-app
image: postgres:13
env:
- name: POSTGRES_DB
value: testdb
- name: POSTGRES_USER
value: testuser
- name: POSTGRES_PASSWORD
value: testpass
ports:
- containerPort: 5432
resources:
requests:
cpu: 100m
memory: 256Mi
limits:
cpu: 1000m
memory: 1Gi
---
apiVersion: v1
kind: Service
metadata:
name: db-app-service
namespace: demo-apps
spec:
selector:
app: db-app
ports:
- port: 5432
targetPort: 5432
type: ClusterIP
EOF
echo "✅ Sample applications deployed successfully!"
kubectl get pods -n demo-apps
Step 2: Install Anteon using Helm
#!/bin/bash
# install-anteon.sh
echo "🚀 Installing Anteon on Kubernetes..."
# Add Anteon Helm repository
helm repo add anteon https://getanteon.github.io/anteon
helm repo update
# Create namespace for Anteon
kubectl create namespace anteon
# Install Anteon with custom values
cat <<EOF > anteon-values.yaml
# Anteon configuration
alaz:
enabled: true
image:
tag: "latest"
resources:
requests:
cpu: 100m
memory: 200Mi
limits:
cpu: 500m
memory: 1Gi
backend:
enabled: true
replicas: 1
resources:
requests:
cpu: 200m
memory: 512Mi
limits:
cpu: 1000m
memory: 2Gi
frontend:
enabled: true
replicas: 1
service:
type: NodePort
port: 8080
postgres:
enabled: true
auth:
database: anteon
username: anteon
password: anteon123
EOF
# Install Anteon
helm install anteon anteon/anteon \
--namespace anteon \
--values anteon-values.yaml \
--wait
echo "✅ Anteon installed successfully!"
# Check installation status
kubectl get pods -n anteon
kubectl get services -n anteon
Step 3: Access Anteon Dashboard
#!/bin/bash
# access-anteon-dashboard.sh
echo "🌐 Setting up access to Anteon dashboard..."
# Port forward to access the dashboard
kubectl port-forward -n anteon service/anteon-frontend 8080:8080 &
# Wait for port forward to establish
sleep 5
echo "✅ Anteon dashboard is now accessible at: http://localhost:8080"
echo "📊 Opening dashboard in browser..."
# Open in default browser (macOS)
open http://localhost:8080
Part 3: Exploring Anteon Features
Service Map Generation
Once Anteon is running, it automatically starts generating service maps using eBPF. You’ll see:
- Real-time Service Discovery: All services in your cluster automatically appear
- Traffic Flow Visualization: Inter-service communication patterns
- Performance Metrics: Response times, error rates, and throughput
- Dependency Mapping: Service dependencies and data flow
Real-time Monitoring Dashboard
The Anteon dashboard provides comprehensive monitoring capabilities:
#!/bin/bash
# generate-sample-traffic.sh
echo "🚦 Generating sample traffic for monitoring..."
# Function to generate HTTP traffic
generate_traffic() {
local service_url=$1
local requests=$2
echo "Sending $requests requests to $service_url"
for i in $(seq 1 $requests); do
curl -s $service_url > /dev/null
sleep 0.1
done
}
# Get service endpoint
WEB_SERVICE_IP=$(kubectl get service web-app-service -n demo-apps -o jsonpath='{.spec.clusterIP}')
# Port forward to access the service
kubectl port-forward -n demo-apps service/web-app-service 8090:80 &
FORWARD_PID=$!
sleep 3
# Generate traffic patterns
echo "🔄 Generating normal traffic..."
generate_traffic "http://localhost:8090" 50
echo "🔄 Generating burst traffic..."
for i in {1..10}; do
generate_traffic "http://localhost:8090" 10 &
done
wait
# Clean up port forward
kill $FORWARD_PID 2>/dev/null
echo "✅ Traffic generation completed!"
Part 4: Performance Testing with Anteon
Step 1: Create Load Testing Scenarios
#!/bin/bash
# create-load-test.sh
echo "🎯 Creating performance testing scenarios..."
# Create a load test configuration
cat <<EOF > load-test-config.json
{
"name": "Web App Load Test",
"description": "Testing web application performance",
"scenarios": [
{
"name": "Basic Load Test",
"duration": "2m",
"load_type": "linear",
"steps": [
{
"name": "Home Page Test",
"method": "GET",
"url": "http://web-app-service.demo-apps.svc.cluster.local",
"timeout": "10s"
}
],
"load_settings": {
"users": 50,
"spawn_rate": 5
}
}
]
}
EOF
echo "✅ Load test configuration created!"
Step 2: Run Performance Tests
Using Anteon’s CLI tool for load testing:
#!/bin/bash
# run-performance-test.sh
echo "🚀 Running performance tests with Anteon..."
# Install Anteon CLI (ddosify)
if ! command -v ddosify &> /dev/null; then
echo "Installing Anteon CLI..."
# For macOS
brew tap getanteon/tap
brew install ddosify
fi
# Run a simple load test
echo "🔄 Executing load test..."
ddosify -t http://localhost:8090 \
-n 1000 \
-d 60 \
-m GET \
-h "User-Agent: Anteon-LoadTest" \
-o stdout-json
echo "✅ Performance test completed!"
Step 3: Advanced Testing Scenarios
#!/bin/bash
# advanced-load-test.sh
echo "🎯 Running advanced performance testing scenarios..."
# Create advanced test configuration
cat <<EOF > advanced-test.json
{
"iteration_count": 100,
"load_type": "waved",
"duration": 300,
"steps": [
{
"id": 1,
"url": "http://localhost:8090/",
"method": "GET",
"headers": {
"User-Agent": "Anteon-Advanced-Test"
},
"timeout": 5
},
{
"id": 2,
"url": "http://localhost:8090/api/health",
"method": "GET",
"headers": {
"Accept": "application/json"
},
"timeout": 3
}
]
}
EOF
# Run the advanced test
ddosify -config advanced-test.json
echo "✅ Advanced testing completed!"
Part 5: Monitoring and Alerting Setup
Step 1: Configure Slack Alerts
#!/bin/bash
# setup-alerts.sh
echo "🔔 Setting up alerting with Anteon..."
# Create alert configuration
cat <<EOF > alert-config.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: anteon-alerts
namespace: anteon
data:
alerts.yml: |
alerts:
- name: high_cpu_usage
condition: cpu_usage > 80
duration: 2m
severity: warning
message: "High CPU usage detected in cluster"
- name: slow_response_time
condition: response_time > 1000ms
duration: 1m
severity: critical
message: "Slow response time detected"
- name: error_rate_spike
condition: error_rate > 5%
duration: 30s
severity: critical
message: "Error rate spike detected"
channels:
slack:
webhook_url: "YOUR_SLACK_WEBHOOK_URL"
channel: "#alerts"
EOF
kubectl apply -f alert-config.yaml
echo "✅ Alert configuration applied!"
echo "📝 Update the Slack webhook URL in the configuration"
Step 2: Custom Metrics and Dashboards
#!/bin/bash
# setup-custom-metrics.sh
echo "📊 Setting up custom metrics and dashboards..."
# Create custom metric configuration
cat <<EOF > custom-metrics.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: anteon-custom-metrics
namespace: anteon
data:
metrics.yml: |
custom_metrics:
- name: business_transactions
type: counter
description: "Number of business transactions processed"
- name: user_sessions
type: gauge
description: "Active user sessions"
- name: payment_processing_time
type: histogram
description: "Payment processing duration"
buckets: [0.1, 0.5, 1.0, 2.0, 5.0]
EOF
kubectl apply -f custom-metrics.yaml
echo "✅ Custom metrics configuration applied!"
Part 6: Best Practices and Optimization
Resource Optimization
#!/bin/bash
# optimize-anteon.sh
echo "⚡ Optimizing Anteon performance..."
# Update Anteon with optimized settings
cat <<EOF > anteon-optimized-values.yaml
alaz:
resources:
requests:
cpu: 200m
memory: 400Mi
limits:
cpu: 1000m
memory: 2Gi
# eBPF optimization settings
config:
sampling_rate: 0.1 # Sample 10% of traffic for large clusters
buffer_size: 1024
max_events_per_second: 10000
backend:
replicas: 2 # High availability
resources:
requests:
cpu: 500m
memory: 1Gi
limits:
cpu: 2000m
memory: 4Gi
postgres:
persistence:
enabled: true
size: 20Gi
resources:
requests:
cpu: 300m
memory: 512Mi
limits:
cpu: 1000m
memory: 2Gi
EOF
# Upgrade Anteon with optimized settings
helm upgrade anteon anteon/anteon \
--namespace anteon \
--values anteon-optimized-values.yaml
echo "✅ Anteon optimized for production!"
Security Best Practices
#!/bin/bash
# secure-anteon.sh
echo "🔒 Applying security best practices..."
# Create network policies
cat <<EOF | kubectl apply -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: anteon-network-policy
namespace: anteon
spec:
podSelector:
matchLabels:
app: anteon
policyTypes:
- Ingress
- Egress
ingress:
- from:
- namespaceSelector:
matchLabels:
name: anteon
ports:
- protocol: TCP
port: 8080
egress:
- {}
EOF
# Create RBAC policies
cat <<EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: anteon-readonly
rules:
- apiGroups: [""]
resources: ["pods", "services", "nodes"]
verbs: ["get", "list", "watch"]
- apiGroups: ["apps"]
resources: ["deployments", "replicasets"]
verbs: ["get", "list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: anteon-readonly-binding
subjects:
- kind: ServiceAccount
name: anteon
namespace: anteon
roleRef:
kind: ClusterRole
name: anteon-readonly
apiGroup: rbac.authorization.k8s.io
EOF
echo "✅ Security policies applied!"
Part 7: Troubleshooting and Maintenance
Common Issues and Solutions
#!/bin/bash
# troubleshoot-anteon.sh
echo "🔧 Anteon troubleshooting toolkit..."
# Function to check Anteon health
check_anteon_health() {
echo "📊 Checking Anteon component health..."
# Check pod status
kubectl get pods -n anteon
# Check service status
kubectl get services -n anteon
# Check recent events
kubectl get events -n anteon --sort-by='.lastTimestamp'
# Check logs
echo "📋 Recent logs from Anteon components:"
kubectl logs -n anteon -l app=anteon-backend --tail=50
}
# Function to restart Anteon components
restart_anteon() {
echo "🔄 Restarting Anteon components..."
kubectl rollout restart deployment -n anteon
kubectl rollout status deployment -n anteon
}
# Function to check eBPF capability
check_ebpf() {
echo "🔍 Checking eBPF capability..."
# Check if eBPF is supported
if kubectl get nodes -o jsonpath='{.items[*].status.nodeInfo.kernelVersion}' | grep -q "3."; then
echo "⚠️ Warning: Old kernel version detected. eBPF features may be limited."
else
echo "✅ Kernel version supports eBPF"
fi
}
# Run diagnostics
check_anteon_health
check_ebpf
echo "✅ Troubleshooting completed!"
Backup and Recovery
#!/bin/bash
# backup-anteon.sh
echo "💾 Creating Anteon backup..."
# Create backup directory
mkdir -p anteon-backup-$(date +%Y%m%d)
BACKUP_DIR="anteon-backup-$(date +%Y%m%d)"
# Backup Helm values
helm get values anteon -n anteon > $BACKUP_DIR/helm-values.yaml
# Backup custom configurations
kubectl get configmaps -n anteon -o yaml > $BACKUP_DIR/configmaps.yaml
kubectl get secrets -n anteon -o yaml > $BACKUP_DIR/secrets.yaml
# Backup database (if using external DB)
kubectl exec -n anteon $(kubectl get pods -n anteon -l app=postgres -o jsonpath='{.items[0].metadata.name}') -- \
pg_dump -U anteon anteon > $BACKUP_DIR/database-backup.sql
echo "✅ Backup created in $BACKUP_DIR"
Conclusion
Anteon provides a powerful, comprehensive solution for Kubernetes monitoring and performance testing. Key benefits include:
Key Takeaways
- Zero-Friction Monitoring: No code changes or sidecars required
- Automatic Discovery: eBPF-based service map generation
- Integrated Testing: Built-in performance testing capabilities
- Real-time Insights: Live metrics and intelligent alerting
- Production-Ready: Scalable architecture with security best practices
Next Steps
- Scale to Production: Apply optimization and security configurations
- Integrate CI/CD: Automate performance testing in your pipelines
- Custom Dashboards: Create business-specific monitoring views
- Advanced Analytics: Leverage Anteon’s data for capacity planning
Resources
Clean Up
#!/bin/bash
# cleanup.sh
echo "🧹 Cleaning up tutorial resources..."
# Remove Anteon
helm uninstall anteon -n anteon
kubectl delete namespace anteon
# Remove sample applications
kubectl delete namespace demo-apps
# Remove Kind cluster
kind delete cluster --name anteon-demo
echo "✅ Cleanup completed!"
⚠️ Disclaimer: Anteon should only be used for testing systems you own. Always follow responsible testing practices and comply with your organization’s policies.