WhisperLiveKit: Complete Guide to Real-Time Speech Recognition with Ultra-Low Latency
⏱️ Estimated Reading Time: 15 minutes
Introduction
Real-time speech recognition has evolved dramatically with the emergence of streaming-optimized models and advanced research breakthroughs. WhisperLiveKit represents the state-of-the-art in real-time speech transcription, combining cutting-edge research from SimulStreaming (SOTA 2025), WhisperStreaming (SOTA 2023), and advanced speaker diarization systems.
Unlike traditional batch-processing approaches that struggle with real-time constraints, WhisperLiveKit leverages intelligent buffering, incremental processing, and voice activity detection to deliver ultra-low latency transcription directly to your browser.
This comprehensive guide will walk you through implementing WhisperLiveKit for production-ready real-time speech applications, from basic setup to advanced features like speaker identification and multi-user support.
Why WhisperLiveKit Over Standard Whisper?
The Real-Time Challenge
Standard Whisper models are designed for complete utterances, not real-time audio chunks. Processing small segments leads to:
- Context Loss: Missing conversational flow and sentence boundaries
- Word Fragmentation: Cutting off words mid-syllable
- Poor Accuracy: Degraded transcription quality on incomplete audio
- High Latency: Batch processing delays
WhisperLiveKit’s Innovation
WhisperLiveKit solves these challenges through:
# Traditional Approach (Problematic)
def process_audio_chunk(chunk):
return whisper.transcribe(chunk) # Loses context, poor quality
# WhisperLiveKit Approach (Optimized)
def process_streaming_audio(stream):
# Intelligent buffering with context preservation
# Voice Activity Detection for efficiency
# SimulStreaming for ultra-low latency
# Incremental processing with LocalAgreement
return optimized_transcription
Core Technologies and Architecture
State-of-the-Art Research Integration
SimulStreaming (SOTA 2025):
- Ultra-low latency transcription with AlignAtt policy
- Frame-level attention guidance for optimal processing timing
- Advanced beam search optimization
WhisperStreaming (SOTA 2023):
- LocalAgreement policy for consistent streaming output
- Intelligent buffer management and trimming strategies
Advanced Speaker Diarization:
- Streaming Sortformer (SOTA 2025) for real-time speaker identification
- Diart (SOTA 2021) integration for production environments
Enterprise-Grade VAD:
- Silero VAD (2024) for accurate voice activity detection
- Reduces computational overhead during silence periods
System Architecture
graph TD
A[Audio Input] --> B[Voice Activity Detection]
B --> C[Audio Buffer Management]
C --> D[SimulStreaming Engine]
D --> E[Speaker Diarization]
E --> F[WebSocket Server]
F --> G[Web UI Client]
H[Multiple Clients] --> F
I[Real-time Processing] --> D
J[Context Preservation] --> C
The architecture supports multiple concurrent users with intelligent resource management and voice activity detection to optimize performance.
Installation and Setup
Prerequisites
System Requirements:
- Python 3.8+
- FFmpeg (required for audio processing)
- 4GB+ RAM (8GB+ recommended for larger models)
- Optional: NVIDIA GPU for accelerated processing
FFmpeg Installation
# macOS
brew install ffmpeg
# Ubuntu/Debian
sudo apt install ffmpeg
# Windows
# Download from https://ffmpeg.org/download.html and add to PATH
WhisperLiveKit Installation
# Create isolated environment
python3 -m venv whisperlivekit-env
source whisperlivekit-env/bin/activate # On Windows: whisperlivekit-env\Scripts\activate
# Install WhisperLiveKit
pip install whisperlivekit
# Verify installation
whisperlivekit-server --help
Quick Start Guide
Basic Server Launch
# Start with default settings (small model, auto language detection)
whisperlivekit-server --model base --language en
# Server starts on http://localhost:8000
# Web UI automatically available at the same address
Testing the Installation
- Start the server:
whisperlivekit-server --model tiny --language en --host localhost --port 8000
-
Open your browser and navigate to
http://localhost:8000
-
Grant microphone permissions when prompted
- Start speaking and watch real-time transcription appear
Verification Script
# test_whisperlivekit.py
import asyncio
import websockets
import json
import pyaudio
import wave
async def test_websocket_connection():
"""Test WebSocket connection to WhisperLiveKit server"""
uri = "ws://localhost:8000/ws"
try:
async with websockets.connect(uri) as websocket:
print("✅ WebSocket connection successful")
# Send test message
test_message = {
"type": "audio_chunk",
"data": "test_audio_data"
}
await websocket.send(json.dumps(test_message))
response = await websocket.recv()
print(f"📨 Server response: {response}")
except Exception as e:
print(f"❌ Connection failed: {e}")
# Run test
asyncio.run(test_websocket_connection())
Advanced Configuration
Model Selection and Performance
# Ultra-fast processing (lower accuracy)
whisperlivekit-server --model tiny --language en
# Balanced performance (recommended for most use cases)
whisperlivekit-server --model base --language en
# High accuracy (requires more resources)
whisperlivekit-server --model large-v3 --language en
# Multilingual support with auto-detection
whisperlivekit-server --model base --language auto
Backend Selection
# SimulStreaming (SOTA 2025) - Ultra-low latency
whisperlivekit-server --backend simulstreaming --model base
# Faster-Whisper - Optimized performance
whisperlivekit-server --backend faster-whisper --model base
# WhisperStreaming - LocalAgreement policy
whisperlivekit-server --backend whisper_timestamped --model base
SimulStreaming Advanced Configuration
# Fine-tune latency vs accuracy
whisperlivekit-server \
--backend simulstreaming \
--model base \
--frame-threshold 25 \
--beams 1 \
--audio-max-len 30.0 \
--never-fire
Key Parameters:
--frame-threshold
: Lower = faster, higher = more accurate (default: 25)--beams
: Beam search beams (1 = greedy, >1 = beam search)--audio-max-len
: Maximum audio buffer length in seconds--never-fire
: Never truncate incomplete words
Speaker Diarization Setup
Basic Speaker Identification
# Enable speaker diarization with Sortformer (SOTA 2025)
whisperlivekit-server \
--model base \
--language en \
--diarization \
--diarization-backend sortformer
Advanced Diarization with Diart
# Diart backend with custom models
whisperlivekit-server \
--model base \
--language en \
--diarization \
--diarization-backend diart \
--segmentation-model pyannote/segmentation-3.0 \
--embedding-model speechbrain/spkrec-ecapa-voxceleb
Hugging Face Authentication for Pyannote
# Required for pyannote.audio models
pip install huggingface_hub
huggingface-cli login
# Accept user conditions for required models:
# 1. pyannote/segmentation
# 2. pyannote/segmentation-3.0
# 3. pyannote/embedding
Production Deployment
Docker Deployment
GPU-Accelerated Container:
# Dockerfile
FROM nvidia/cuda:11.8-runtime-ubuntu20.04
RUN apt-get update && apt-get install -y \
python3 python3-pip ffmpeg \
&& rm -rf /var/lib/apt/lists/*
RUN pip install whisperlivekit
EXPOSE 8000
CMD ["whisperlivekit-server", "--model", "base", "--language", "en", "--host", "0.0.0.0"]
# Build and run
docker build -t whisperlivekit .
docker run --gpus all -p 8000:8000 whisperlivekit
CPU-Only Container:
# Use pre-built CPU image
docker run -p 8000:8000 whisperlivekit/cpu:latest
Production Server Configuration
# Production-ready configuration
whisperlivekit-server \
--model base \
--language en \
--host 0.0.0.0 \
--port 8000 \
--ssl-certfile /path/to/cert.pem \
--ssl-keyfile /path/to/key.pem \
--diarization \
--preloaded_model_count 4 \
--min-chunk-size 1.0 \
--buffer_trimming sentence
Load Balancing with Nginx
# /etc/nginx/sites-available/whisperlivekit
upstream whisperlivekit_backend {
server 127.0.0.1:8000;
server 127.0.0.1:8001;
server 127.0.0.1:8002;
server 127.0.0.1:8003;
}
server {
listen 80;
server_name your-domain.com;
location / {
proxy_pass http://whisperlivekit_backend;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
}
}
Custom Web Integration
Basic WebSocket Client
// whisperlivekit-client.js
class WhisperLiveKitClient {
constructor(serverUrl = 'ws://localhost:8000/ws') {
this.serverUrl = serverUrl;
this.websocket = null;
this.mediaRecorder = null;
this.audioContext = null;
}
async connect() {
try {
this.websocket = new WebSocket(this.serverUrl);
this.websocket.onopen = () => {
console.log('✅ Connected to WhisperLiveKit');
this.startAudioCapture();
};
this.websocket.onmessage = (event) => {
const data = JSON.parse(event.data);
this.handleTranscription(data);
};
this.websocket.onerror = (error) => {
console.error('❌ WebSocket error:', error);
};
} catch (error) {
console.error('Connection failed:', error);
}
}
async startAudioCapture() {
try {
const stream = await navigator.mediaDevices.getUserMedia({
audio: {
sampleRate: 16000,
channelCount: 1,
echoCancellation: true,
noiseSuppression: true
}
});
this.audioContext = new AudioContext({ sampleRate: 16000 });
const source = this.audioContext.createMediaStreamSource(stream);
// Process audio in real-time
this.processAudioStream(source);
} catch (error) {
console.error('Microphone access denied:', error);
}
}
processAudioStream(source) {
const processor = this.audioContext.createScriptProcessor(4096, 1, 1);
processor.onaudioprocess = (event) => {
const audioData = event.inputBuffer.getChannelData(0);
// Convert to 16-bit PCM
const pcmData = new Int16Array(audioData.length);
for (let i = 0; i < audioData.length; i++) {
pcmData[i] = Math.max(-32768, Math.min(32767, audioData[i] * 32768));
}
// Send to server
if (this.websocket && this.websocket.readyState === WebSocket.OPEN) {
this.websocket.send(pcmData.buffer);
}
};
source.connect(processor);
processor.connect(this.audioContext.destination);
}
handleTranscription(data) {
if (data.type === 'transcription') {
this.displayTranscription(data.text, data.speaker);
}
}
displayTranscription(text, speaker = null) {
const transcriptionDiv = document.getElementById('transcription');
const timestamp = new Date().toLocaleTimeString();
const entry = document.createElement('div');
entry.className = 'transcription-entry';
entry.innerHTML = `
<span class="timestamp">${timestamp}</span>
${speaker ? `<span class="speaker">Speaker ${speaker}:</span>` : ''}
<span class="text">${text}</span>
`;
transcriptionDiv.appendChild(entry);
transcriptionDiv.scrollTop = transcriptionDiv.scrollHeight;
}
}
// Usage
const client = new WhisperLiveKitClient();
client.connect();
React Integration
// WhisperLiveKitComponent.jsx
import React, { useState, useEffect, useRef } from 'react';
const WhisperLiveKitComponent = () => {
const [transcriptions, setTranscriptions] = useState([]);
const [isConnected, setIsConnected] = useState(false);
const [isRecording, setIsRecording] = useState(false);
const websocketRef = useRef(null);
const mediaRecorderRef = useRef(null);
useEffect(() => {
connectToServer();
return () => {
if (websocketRef.current) {
websocketRef.current.close();
}
};
}, []);
const connectToServer = () => {
const ws = new WebSocket('ws://localhost:8000/ws');
ws.onopen = () => {
setIsConnected(true);
console.log('Connected to WhisperLiveKit');
};
ws.onmessage = (event) => {
const data = JSON.parse(event.data);
if (data.type === 'transcription') {
setTranscriptions(prev => [...prev, {
id: Date.now(),
text: data.text,
speaker: data.speaker,
timestamp: new Date().toLocaleTimeString()
}]);
}
};
ws.onclose = () => {
setIsConnected(false);
console.log('Disconnected from WhisperLiveKit');
};
websocketRef.current = ws;
};
const startRecording = async () => {
try {
const stream = await navigator.mediaDevices.getUserMedia({
audio: {
sampleRate: 16000,
channelCount: 1,
echoCancellation: true,
noiseSuppression: true
}
});
const mediaRecorder = new MediaRecorder(stream, {
mimeType: 'audio/webm;codecs=opus'
});
mediaRecorder.ondataavailable = (event) => {
if (event.data.size > 0 && websocketRef.current?.readyState === WebSocket.OPEN) {
websocketRef.current.send(event.data);
}
};
mediaRecorder.start(100); // Send data every 100ms
mediaRecorderRef.current = mediaRecorder;
setIsRecording(true);
} catch (error) {
console.error('Failed to start recording:', error);
}
};
const stopRecording = () => {
if (mediaRecorderRef.current) {
mediaRecorderRef.current.stop();
mediaRecorderRef.current = null;
setIsRecording(false);
}
};
return (
<div className="whisperlivekit-container">
<div className="controls">
<div className={`status ${isConnected ? 'connected' : 'disconnected'}`}>
{isConnected ? '🟢 Connected' : '🔴 Disconnected'}
</div>
<button
onClick={isRecording ? stopRecording : startRecording}
disabled={!isConnected}
className={`record-button ${isRecording ? 'recording' : ''}`}
>
{isRecording ? '⏹️ Stop Recording' : '🎤 Start Recording'}
</button>
</div>
<div className="transcriptions">
<h3>Real-time Transcription</h3>
<div className="transcription-list">
{transcriptions.map(item => (
<div key={item.id} className="transcription-item">
<span className="timestamp">{item.timestamp}</span>
{item.speaker && <span className="speaker">Speaker {item.speaker}:</span>}
<span className="text">{item.text}</span>
</div>
))}
</div>
</div>
</div>
);
};
export default WhisperLiveKitComponent;
Performance Optimization
Model Selection Strategy
# performance_config.py
PERFORMANCE_CONFIGS = {
'ultra_fast': {
'model': 'tiny',
'backend': 'simulstreaming',
'frame_threshold': 15,
'beams': 1,
'min_chunk_size': 0.5
},
'balanced': {
'model': 'base',
'backend': 'simulstreaming',
'frame_threshold': 25,
'beams': 1,
'min_chunk_size': 1.0
},
'high_accuracy': {
'model': 'large-v3',
'backend': 'faster-whisper',
'beams': 5,
'min_chunk_size': 2.0
}
}
def get_optimal_config(use_case):
"""Select optimal configuration based on use case"""
if use_case == 'live_streaming':
return PERFORMANCE_CONFIGS['ultra_fast']
elif use_case == 'meeting_transcription':
return PERFORMANCE_CONFIGS['balanced']
elif use_case == 'legal_documentation':
return PERFORMANCE_CONFIGS['high_accuracy']
Resource Management
# Multi-instance deployment for high concurrency
# Instance 1: Ultra-fast processing
whisperlivekit-server --model tiny --port 8001 --preloaded_model_count 2
# Instance 2: Balanced processing
whisperlivekit-server --model base --port 8002 --preloaded_model_count 2
# Instance 3: High-accuracy processing
whisperlivekit-server --model large-v3 --port 8003 --preloaded_model_count 1
Troubleshooting Guide
Common Issues and Solutions
1. Server Won’t Start
# Check FFmpeg installation
ffmpeg -version
# Verify Python environment
python -c "import whisperlivekit; print('✅ Installation OK')"
# Check port availability
lsof -i :8000
2. Poor Transcription Quality
# Increase model size
whisperlivekit-server --model base # Instead of tiny
# Adjust chunk size
whisperlivekit-server --min-chunk-size 2.0
# Enable confidence validation
whisperlivekit-server --confidence-validation
3. High Latency Issues
# Use SimulStreaming backend
whisperlivekit-server --backend simulstreaming --frame-threshold 15
# Reduce audio buffer
whisperlivekit-server --audio-max-len 15.0
# Enable VAD optimization
whisperlivekit-server --vac-chunk-size 0.5
4. WebSocket Connection Issues
// Add connection retry logic
class RobustWhisperClient {
constructor(serverUrl) {
this.serverUrl = serverUrl;
this.reconnectAttempts = 0;
this.maxReconnectAttempts = 5;
}
connect() {
this.websocket = new WebSocket(this.serverUrl);
this.websocket.onclose = () => {
if (this.reconnectAttempts < this.maxReconnectAttempts) {
setTimeout(() => {
this.reconnectAttempts++;
this.connect();
}, 1000 * this.reconnectAttempts);
}
};
}
}
Performance Monitoring
# monitoring.py
import psutil
import time
import requests
def monitor_whisperlivekit_performance():
"""Monitor WhisperLiveKit server performance"""
while True:
try:
# Check server health
response = requests.get('http://localhost:8000/health', timeout=5)
# Monitor system resources
cpu_percent = psutil.cpu_percent(interval=1)
memory_percent = psutil.virtual_memory().percent
print(f"🖥️ CPU: {cpu_percent}% | 💾 Memory: {memory_percent}%")
if cpu_percent > 80:
print("⚠️ High CPU usage detected")
if memory_percent > 80:
print("⚠️ High memory usage detected")
except Exception as e:
print(f"❌ Health check failed: {e}")
time.sleep(10)
if __name__ == "__main__":
monitor_whisperlivekit_performance()
Real-World Use Cases
1. Live Meeting Transcription
# meeting_transcriber.py
import asyncio
import websockets
import json
from datetime import datetime
class MeetingTranscriber:
def __init__(self):
self.transcriptions = []
self.meeting_id = datetime.now().strftime("%Y%m%d_%H%M%S")
async def start_meeting_transcription(self):
uri = "ws://localhost:8000/ws"
async with websockets.connect(uri) as websocket:
print(f"📝 Meeting transcription started: {self.meeting_id}")
async for message in websocket:
data = json.loads(message)
if data['type'] == 'transcription':
entry = {
'timestamp': datetime.now().isoformat(),
'speaker': data.get('speaker', 'Unknown'),
'text': data['text']
}
self.transcriptions.append(entry)
print(f"[{entry['timestamp']}] Speaker {entry['speaker']}: {entry['text']}")
def export_meeting_notes(self):
"""Export meeting transcription to file"""
filename = f"meeting_{self.meeting_id}.json"
with open(filename, 'w') as f:
json.dump(self.transcriptions, f, indent=2)
print(f"📄 Meeting notes exported to {filename}")
# Usage
transcriber = MeetingTranscriber()
asyncio.run(transcriber.start_meeting_transcription())
2. Customer Service Call Analysis
# call_analyzer.py
import re
from collections import Counter
class CallAnalyzer:
def __init__(self):
self.sentiment_keywords = {
'positive': ['great', 'excellent', 'satisfied', 'happy', 'good'],
'negative': ['terrible', 'awful', 'disappointed', 'angry', 'bad'],
'neutral': ['okay', 'fine', 'average', 'normal']
}
def analyze_call_transcription(self, transcriptions):
"""Analyze customer service call for insights"""
analysis = {
'total_duration': len(transcriptions),
'speaker_distribution': Counter(),
'sentiment_analysis': {'positive': 0, 'negative': 0, 'neutral': 0},
'key_topics': [],
'action_items': []
}
for entry in transcriptions:
speaker = entry['speaker']
text = entry['text'].lower()
# Speaker distribution
analysis['speaker_distribution'][speaker] += 1
# Sentiment analysis
for sentiment, keywords in self.sentiment_keywords.items():
if any(keyword in text for keyword in keywords):
analysis['sentiment_analysis'][sentiment] += 1
# Extract action items
if any(phrase in text for phrase in ['will follow up', 'will send', 'will call back']):
analysis['action_items'].append(entry)
return analysis
def generate_call_summary(self, analysis):
"""Generate executive summary of the call"""
summary = f"""
📞 Call Analysis Summary
========================
Total Interactions: {analysis['total_duration']}
Speaker Distribution:
{dict(analysis['speaker_distribution'])}
Sentiment Analysis:
- Positive: {analysis['sentiment_analysis']['positive']}
- Negative: {analysis['sentiment_analysis']['negative']}
- Neutral: {analysis['sentiment_analysis']['neutral']}
Action Items: {len(analysis['action_items'])}
"""
return summary
3. Accessibility Integration
// accessibility_integration.js
class AccessibilityTranscriber {
constructor() {
this.isHighContrast = false;
this.fontSize = 'medium';
this.speechRate = 1.0;
}
setupAccessibilityFeatures() {
// High contrast mode
this.addHighContrastToggle();
// Font size controls
this.addFontSizeControls();
// Text-to-speech for transcriptions
this.addTextToSpeech();
// Keyboard navigation
this.addKeyboardShortcuts();
}
addHighContrastToggle() {
const toggle = document.createElement('button');
toggle.textContent = '🎨 High Contrast';
toggle.onclick = () => {
this.isHighContrast = !this.isHighContrast;
document.body.classList.toggle('high-contrast', this.isHighContrast);
};
document.getElementById('accessibility-controls').appendChild(toggle);
}
addTextToSpeech() {
const speakButton = document.createElement('button');
speakButton.textContent = '🔊 Read Aloud';
speakButton.onclick = () => {
const transcriptionText = document.getElementById('transcription').textContent;
const utterance = new SpeechSynthesisUtterance(transcriptionText);
utterance.rate = this.speechRate;
speechSynthesis.speak(utterance);
};
document.getElementById('accessibility-controls').appendChild(speakButton);
}
addKeyboardShortcuts() {
document.addEventListener('keydown', (event) => {
// Ctrl+R: Start/Stop recording
if (event.ctrlKey && event.key === 'r') {
event.preventDefault();
this.toggleRecording();
}
// Ctrl+S: Save transcription
if (event.ctrlKey && event.key === 's') {
event.preventDefault();
this.saveTranscription();
}
// Ctrl+Plus: Increase font size
if (event.ctrlKey && event.key === '=') {
event.preventDefault();
this.increaseFontSize();
}
});
}
}
Advanced Features and Customization
Custom Language Models
# custom_model_integration.py
from whisperlivekit import WhisperLiveKitServer
class CustomWhisperServer(WhisperLiveKitServer):
def __init__(self, custom_model_path):
super().__init__()
self.custom_model_path = custom_model_path
def load_custom_model(self):
"""Load domain-specific fine-tuned model"""
# Implementation for custom model loading
pass
def apply_domain_specific_processing(self, transcription):
"""Apply domain-specific post-processing"""
# Medical terminology correction
medical_corrections = {
'heart attack': 'myocardial infarction',
'high blood pressure': 'hypertension'
}
for term, correction in medical_corrections.items():
transcription = transcription.replace(term, correction)
return transcription
Integration with External Services
# external_integrations.py
import requests
import json
class ExternalServiceIntegrator:
def __init__(self):
self.slack_webhook = "YOUR_SLACK_WEBHOOK_URL"
self.teams_webhook = "YOUR_TEAMS_WEBHOOK_URL"
async def send_to_slack(self, transcription_data):
"""Send transcription to Slack channel"""
message = {
"text": f"🎤 New Transcription",
"attachments": [{
"color": "good",
"fields": [{
"title": "Speaker",
"value": transcription_data.get('speaker', 'Unknown'),
"short": True
}, {
"title": "Text",
"value": transcription_data['text'],
"short": False
}]
}]
}
response = requests.post(self.slack_webhook, json=message)
return response.status_code == 200
async def save_to_database(self, transcription_data):
"""Save transcription to database"""
# Database integration logic
pass
async def trigger_workflow(self, transcription_data):
"""Trigger automated workflow based on transcription content"""
# Workflow automation logic
pass
Conclusion
WhisperLiveKit represents a significant advancement in real-time speech recognition technology, combining state-of-the-art research with practical production-ready features. Through this comprehensive guide, you’ve learned to:
Key Achievements
- Master Real-Time Speech Processing: Understand the fundamental differences between batch and streaming speech recognition
- Implement Production Systems: Deploy scalable, multi-user speech transcription services
- Advanced Feature Integration: Leverage speaker diarization, voice activity detection, and custom backends
- Performance Optimization: Configure systems for optimal latency and accuracy trade-offs
- Real-World Applications: Build meeting transcribers, accessibility tools, and customer service analyzers
Technical Highlights
- Ultra-Low Latency: SimulStreaming backend with frame-level attention guidance
- Enterprise-Grade Features: Multi-user support, speaker identification, SSL/TLS security
- Flexible Architecture: WebSocket-based real-time communication with web UI integration
- Production Ready: Docker deployment, load balancing, monitoring, and error handling
Next Steps
Consider exploring these advanced topics:
- Custom Model Fine-Tuning: Adapt models for domain-specific terminology
- Multi-Modal Integration: Combine with video processing for comprehensive meeting analysis
- Edge Deployment: Optimize for mobile and IoT devices
- Advanced Analytics: Implement sentiment analysis and conversation intelligence
WhisperLiveKit’s combination of cutting-edge research and practical implementation makes it an ideal choice for building the next generation of voice-enabled applications. Whether you’re developing accessibility tools, meeting transcription systems, or customer service analytics, WhisperLiveKit provides the foundation for reliable, scalable real-time speech recognition.
Related Resources: